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Syntheses and spectroscopic characterization of some
phosphoramidates as reversible inhibitors of human
acetylcholinesterase and determination of their potency
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Abstract
The ability of phosphoramidates Me2NP(O)(Cl)(p-NHC6H4NO2) 1, Me2NP(O)(p-NHC6H4NO2)2 2, (CH3C6H4O-
p)P(O)(/)-NHC6H4NO2)2 3 and (CH3C6H4O-p)2P(O)(/)-NHC6H4NO2) 4 to inhibit human acetylcholinesterase (hAChE)
has been evaluated by a modified EUman's method and spectrophotometric measurements. Results showed that compounds 1
and 2 do not have any inhibitory potency, whereas compounds 3 and 4 were reversible mixed inhibitors. The IC50 values for
inhibitors 3 and 4 were 0.143 and 0.581 mM, respectively. The previously unknown compounds 3 and 4 were synthesized and
characterized by ' H , ' ^ C , ^ ' P NMR and IR spectroscopy and elemental analysis.

Keywords: EUman's method, human acetylcholinesterase,
inhibition

values, phosphoramidates, reversible mixed inhibitors.

Introduction

Many phosphoramidate compoimds inhibit human
acetylcholinesterase (hAChE, EC 3.1.1.7) by phos-
phorylation of a serine hydroxyl group in the active site
of this enzyme leading to its inactivation. This
inhibition increases acetylcholine's levels in cholin-
ergic synapses of both peripheral and central nervous
systems [1-8]. During the inhibition, phosphorylated
enzyme undergoes a postinhibitory process and its
spontaneous reactivation is very slow [5,8]. The
mechanism of inhibition by these compounds has
been widely studied. Many papers have reported the
irreversible inhibition of human acetylcholinesterase
by phosphoramidates [2-4,7,9-19] and some authors
have reported reversible inhibitors [1,5,6,8,20-26].
Drug design is a matter of great interest based on
reactivation of hAChE with site-directed nucleophiles
such as 2-pralidoxime (2-PAM) and its analogs. The
nucleophile binds to the active site and reacts with the
phosphorylated hydroxyl group to release free and

active enzyme which in turn becomes phosphorylated
[1,5,8,21,22].

Bollinger et al. studied the inhibitory effect of
(Me2N)2P(O)(p-NHC6H4NO2), 5, and Me2P(O)
(P-NHC6H4NO2), 6, on acetylcholinesterase [27].
They found that only molecule 5 with a (O)PN3
moiety has inhibitory potency and acts as reversible
inhibitor. To extend investigation in this area, we
designed and synthesized compounds 1-4, which
have a XY(O)P(p-NHC6H4NO2) skeleton and
examined their inhibitory potency and inhibition
mechanism with hAChE using the spectrophoto-
metric method based on EUman's procedure [28].

Materials and methods

All reactions for synthesis of the phosphoramidates
were carried out under an argon atmosphere. Melting
points were determined on a Gallenkamp apparatus.
' H , ' ^C and ^'P NMR spectra were recorded on a
Bruker (Avance DRS) 500 spectrometer and chemical
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shifts were determined relative to TMS and 85%
H3PO4, respectively, as external standards. IR spectra
(KBr pellets) were obtained with a Shimadzu, IR-60
model spectrometer. Elemental analysis was per-
formed using a Heraeus CHN-0-RAPID instrument.
UV measurements were performed on a Shimadzu
UV-2100 spectrophotometer. All chemicals and
solvents for syntheses were from Merck. Phosphor-
amidodichloridicacid-4-methylphenylester was pre-
pared by the literature method [29].

7.07 (d, ^JH-H = 7 . 3 6 H Z , 4Hortho), 7.91 (d,
' J H - H = 7 .47HZ, 2Hortho); ' 'C NMR (DMSO-dg),
8 (ppm): 20.74 (s, P-CH3), 112.93 (s), 120.44 (s),
126.82 (s), 130.12 (s), 133.37 (s), 136.06 (s), 149.82
(s), 156.25 (s); ^̂ P NMR (DMSO-dg), 8 (ppm):
- 17.64 (s);IR(KBr), v(cm'"'): 3400 (w,N-H), 2920
(m), 1598 (w), 1499 (s, NO2), 1337 (m, NO2), 1255
(s), 1203 (vs, P=0) , 1163 (m), 1080 (m), 1031 (s),
990 (m), 949 (s, P-N), 920 (s), 820 (m), 705 (w),
548 (w), 499 (m), 475 (m).

Synthesis

N,N-(dimethyl)-N'-(4-nitrophenyl)phosphoramidochbride,
1 and N,N-(dimethyl)-N',N"-bis (4-nitrophenyl)phos-
phoramide, 2. were synthesized and characterized by
' H , '^C, ^'P NMR and IR spectroscopy and elemental
analysis [30].

N,N'-bis(4-nitrophenyl)phosphoramidicacid-4-
methylphenylester, 3. To a solution of phosphorami-
dodichloridicacid-4-methylphenylester (2.25 g, 10 mmol)
in dry benzene (20 ml), the sodium salt of 4-
nitroaniline {2.16 g, 20 mmol) was added under an
argon atmosphere. After 4h stirring, the precipitate
was removed and washed with dry chloroform
(20 ml). The purity of the product was up to 98%.
(yield 65%), m. p, = 174-176°C. Anal. Calc. for
C19H17N4O6P: C, 53.27; H, 3.97; N, 13,08. Found:
C, 53.20; H, 3.93; N, 12.99%. ^H NMR (DMSO-dg),
8 (ppm): 2.24 (s, 3H, p-CH^), 6.63 (d, ^J'H-
H = 8.28 Hz, 4Hortho),7.0 (d, ^JH-H = 7.97Hz,
2H^eta), 7.1 (d, % _ H = 7.93 Hz, 2Ho,tho), 7.86 (s,
2 N-H), 7.92 (d, % _ H = 8.28Hz, 4H^eta); ' 'C
NMR (DMSO-de), 8 (ppm): 20.28 (s, P-CH3),
113.02 (s), 119.94 (s), 126.32 (s), 129.86 (s),
133,57 (s), 136.07 (s), 148.76 (s), 155.03 (s); ^'P
NMR (DMSO-de), 8 (ppm): - 19.09 (s); IR (KBr), v
(cm"'): 2855 (w,N-H), 1962 (w), 1589 (s), 1514 (vs,
NO2), 1342 (s, NO2), 1309 (m), 1198 (m, P=O),
1121 (m), 990 (m, P-N), 919 (m), 855 (m), 824 (m),
735 (m), 672 (m), 499 (m), 493 (s).

N- (4-nitrophenyl)phosphoramidicacid-bis (4-
methylphenyl) ester, 4. The sodium salt of 4-nitroaniline
(1.6g, 10 mmol) was added to a solution of
phosphoramidodichloridicacid-4-methylphenylester
(2.25 g, 10 mmol) in dry benzene (20 ml) under an
argon atmosphere and the mixture was stirred at room
temperature for 5 h. The yellow precipitate obtained
was washed with dry chloroform (20 ml). The purity of
the product was up to 98%. (yield 58%), m.p. = 165-
168°C. Anal. Calc. for C20H19N2O5P: C, 60.3;
H, 4.77; N, 7.03. Found: C, 60.1; H, 4.72; N,
6,988%. ^H NMR (DMSO-dg), 8 (ppm): 2.24
(s, 6H, P-CH3), 6,61 (d, ^^H-H = 7.58 Hz, 2H^eta),
6.75 (s, NH), 7.01 (d, % _ H =

Kinetic experiments

All reagents for enzymatic experiments were from
Fluka. Human acetylcholinesterase (hAChE) from
SIGMA (50 units/785 (xl) was diluted 25-fold in
phosphate buffer (Na2HPO4/NaH2PO4, 70 mM,
pH = 7.8).

The activity ofthe enzyme was measured at 25°C by
a modified Ellman's method [28]. The reaction
mixture for determination of IC50 values consisted
of: DTNB solution, 50fJLl; Inhibitor, x\h\
(5 < x< 400); acetylthiocholine (ASCh) solution,
15|JL1; phosphate buffer, (835-x) |i,l; AChE solution,
100|i,l. The concentrations of substrate (50), DTNB
and inhibitors 1-4 were 1.35 X 10~^ 10"'* and
0.019, 0.014, 0.012 and 0.013 M, respectively, and
the enzyme concentration under the assay conditions
was 33.4 X 10~^M. K^ and Kmax were obtained in
the absence and presence of inhibitor from double-
reciprocal Linweaver-Burk plots [31]. A control
solution containing all of above materials except
inhibitor was used to determine the activity of the
enzyme.

Results

Synthesis and spectral data

The interesting point in compounds 1 and 2 is their
Ĵ'pNCH = 0- Usually, in compoimds with the general

formula Me2NP(O)XY (X = Y = halide or amine or
X = halide, Y = amine) a doublet with ^JPNCH of
about 10-14HZ is observed [27,32-34].

The ^H NMR spectra of compounds 3 and 4
showed that ^Jv-n is zero. This phenomena was has
also been observed in some phosphoramidates
[32,33]. The reason for the vanishing ^JP_H coupling
was described as the formation of partial multiple
bonds between phosphorus and nitrogen in phosphor-
amidates [33].

It has been demonstrated that the crystalline state of
compound (MeO)2P(O)(p-NHC6H4NO2) exists as a
network of linear hydrogen bonds [35]. In compounds
3 and 4, we expected the formation of intermolecular
hydrogen bonding. The existence of 4-nitroaniline
as an electron withdrawing group in these molecules
increased the acidity of the amine hydrogen.
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The highly acidity of these protons caused the
exchange with the moisture of DMSO-d6 and
appeared in the ' H NMR spectra as a singlet
downfield peak. The '^C NMR spectra of molecules
3 and 4 did not show any coupling of carbons with
phosphorus CJp-c = 0). ^'P NMR indicated that the
phosphorus atom in compound 4 was more
deshielded than in compound 3. This may be
attributed to greater electronegativity of oxygen
compared to nitrogen. The IR spectra showed a
stronger i^=o and a weaker vp^ in compoimd 4 than in
compound 3.

Human acetylcholinesterase inhibition

Compounds 1 and 2: In experiments with these
compounds, the activity of the enzyme showed
negligible changes (Figure 1) and their inhibitory
potency was negligible.

Compounds 3 and 4: By plotting the VI/VQ (FI and
VQ, are the activity of the enzyme in the presence and
absence of inhibitors, respectively) against log [I],
where [I] is the inhibitor concentration, the IC50 values
of compounds 3 and 4 were obtained as 0.143 and
0.581 mM, respectively (Figure 2). Usually, a plot of
remaining activity of the enzyme versus time for
irreversible inhibiting phosphoramidates shows a
linearly decrease from which the rate constant for
inhibition of the enzyme may be obtained [16,36].
These plots for the inhibitors 3 and 4 indicated
that the activity of the enzyme remains constant with
time and demonstrating that the inhibition process is
reversible.

To further characterize the reversible process and to
obtain the K^ and F^ax values in the absence and in
the presence of inhibitor, l/V was plotted against
l/[5'], where the Fand [S] are the enzyme activity and
substrate concentration, respectively. These Line-
weaver-Burk plots [31] indicated that compounds 3
and 4 were mixed inhibitors (Scheme 1) and their K^^
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Figure 1, The plot of ViA^o against log ([I] x 10**) for inhibitors
(Me2N)P(O)(Cl)(p-NHC6H4NO2), 1, and (Me2N)P(O)(p-
NHC6H4NO2)2) 2, VI and Vo are the enzyme activity (OD min" ')
and [I] is the inhibitor concentration I
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Figure 2, The plot of ViA^o against log ([I] X 10*) for inhibitors: 1-
JO2)2, 3, 2-(p-CH3C6

4, VI and Vo are the enzyme
activity (OD min~') and [I] is the inhibitor concentration

values were 23.19 X 10 ^and 10.79 X 10
and V^^ values were 9.16 X 10~^ and 9.97 X 10

î  respectively. Also, the K^ and F^
values for enzyme were 108.20 X 10~'molL~' and
10.03 X 10"^molL~'min"', respectively.

Discussion

Usually, the inhibition of acetylcholinesterase by
phosphoramidates has an irreversible mechanism
[2-4,7,9-19] and only a few show a reversible
inhibitory effect such as (Me2N)2P(O)(p-NHC6H4.
NO2)j 5 [27]. Compounds 1-4 were designed and
synthesized to further investigate the influence of these
phosphoramidates on human acetylcholinesterase.

Table I summarizes the spectral and enzymatic data
for compounds 1-6. Compound 1 with a chlorine
atom as a suitable leaving group was expected to be an
irreversible inhibitor, but to our surprise this
compound gave no significant change in the activity
ofthe enzyme hAChE. The ^'P NMR spectra of this
compound in D2O indicated two peak at - 10.59 and
0.29 ppm with relative ratio 1:1. The P-Cl bond in
molecule 1 is labile and hydrolysis in phosphate buffer
perhaps produces a P-OH bond. This may be the
reason for the negligible inhibitory potency of
molecule 1.

E + Acetylthiocholine

Inhibitor 3 (or 4)

E-Inhibitor + Acetylthiocholine
aK,

E-Acetylthiocholine

Inhibitor 3 (or 4)

E-Acetylthiocholine-Inhibitor

Scheme 1, The mechanism of human acetylcholinesterase
inhibition by compounds 3 and 4,
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Table I, The spectral and enzymatic data for compounds 1-6,

Compound

1

2
3
4

5
6

531P
(ppm)

-0,9
2,17

-19,09
-17,64

-

JpNCH
(Hz)

s,0
s,0
—
_

d,, 10
-

Jp-H
(Hz)

_
—

8 ,0

s, 0
_

-

"Jp-C
(Hz),
(n=2-5)

s, 0
s, 0
s, 0
s, 0
—

-

(cm-')

1221
1300
1198
1203
1250
1255

VpN

(cm-')

907 (ar) 724 (al)
902 (ar) 746 (al)

990
949
980
980

IC50
(mM)

=NI

0,143
0,581

-

-

K^XIO'
(molL"')

101,12
103,08
23,19
10,79

-

-

KmaxXlO'
(molL 'min ')

9,98
10,01
9,16
9,97
-
-

Ref,

b

b

b

b

27
27

" Non-Inhibitor,
'' This work.

The behavior of compound 2 with hAChE was
similar to that of compound 1, Although the structure
of compound 2 is similar to that of molecule 5 of
Bollinger et al. [27] and contains a (O)PN3 moeity,
their inhibition powers are different against hAChE.

Debord et al. [37] showed that the (O)PN3 moeity in
aliphatic phosphoramides interacts with the hydro-
philic zone ofthe catalytic site of butyrylcholinesterase.
Jarv et al. indicated [38] that in acetylcholinesterase
three hydrophobic regions bind to hydrocarbon
substituents and surround this zone. In phosphor-
amide 2, the existence of two nitroaniline groups
decrease the lipophilicity of the aromatic ring. The
hydrophobic constants obtained by Rekker et al. [39]
are the measure of lipophilicity of a molecular fragment
which is 1.69 for C6H4 and -0.059 for an aromatic
nitro group. Therefore, it is likely that two nitroaniline
groups will decrease the lipophilicity ofthe molecule to
a great extent, and this probably leads to the negligible
inhibitory effect of this compound.

Surprisingly, compounds 3 and 4 revealed different
results. Although the only structural difference
between molecules 2 and 3 is the replacement of a
Me2N group byp-cresol, the interaction of molecule 3
with hAChE indicated that it was a reversible mixed
inhibitor.

To further investigate the relationship between the
inhibitory effects of this molecule with a p-cresol
substituent, we used molecule 4 which has two p-
cresol groups. The inhibitory potency of this molecule
is drastically decreased in comparison to molecule 3.
The IC50 values for compounds 3 and 4 are 0.143 and
0.581 mM, respectively. These values show that the
inhibitory potency of compound 3 is greater than that
of compound 4.

The noticeable point in molecules 3 and 4 with
phenolic substituents is that the P-O-ph groups are
stable against hydrolysis and show only a singlet peak
in ^'P NMR spectra in D2O.

Finally, it is concluded that changing the
substituents X and Y in phosphoramidates
(X)(Y)P(O) (^-NHC6H4NO2) leads to compounds
with different inhibitory potency. The effect of

4-nitroaniline within this research area is interesting.
Compounds 1 and 2 showed no inhibitory effect
while compounds 3 and 4 possesing (O)PN2O and
(O)PNO2 moieties, respectively, are reversible mixed
inhibitors. Spectral data showed that in compounds
with a (O)P(p-NHC6H4NO2) moiety all phos-
phorus-hydrogen and phosphorus-carbon couplings
disappeared.
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